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Abstract.
Coupled cluster methods based on Brueckner orbitals are well-known to resolve the
problems of symmetry-breaking and spin-contamination that are often associated with
Hartree-Fock orbitals. However their computational cost is large enough to prevent
application to large molecules. Here we present a simple approximation where the
orbitals are optimized with the mean-field energy plus a correlation energy taken as the
opposite-spin component of the second order many-body correlation energy, scaled by an
empirically chosen parameter (recommended as 1.2 for general applications). This
“optimized 2™ order opposite spin” (abbreviated as 02) method requires fourth order
computation on each orbital iteration. O2 is shown to yield predictions of structure and
frequencies for closed shell molecules that are very similar to scaled second order
Moller-Plesset methods. However it yields substantial improvements for open shell
molecules, where problems with spin-contamination and symmetry breaking are shown

to be greatly reduced.



I. Introduction
Most standard wavefunction-based electron correlation treatments like second-order

Moller-Plesset perturbation theor' (MP2) and coupled-cluster methods (CCSD?

CCSD(T)*) typically employ restricted (RHF) or unrestricted (UHF) Hartree-Fock
orbitals as their initial reference for closed- or open-shell systems, respectively. In
general, the performance of these methods for closed-shell systems with respect to
energetics, structural features and other molecular properties like vibrational frequencies
are well documented and known to be quite reliable and accurate.* Typically, the
description improves as the level of correlation included increases systematically (in the
order MP2 < CCSD < CCSD(T)).” However, the reliability and systematic improvement
of these methods that are based on UHF orbitals for open-shell systems is quite erratic.’
In particular, UMP2 (MP2 based on UHF orbitals) results are quite poor for
predicting basic properties and reactivities of radicals.®® This failure is largely attributed

to the symmetry breaking problems or the spin-contamination of the UHF wavefunction,

which is not an eigenfuction of the spin operator, $2.1° For example, the <S 2> values of

the stable phenalenyl radical (a doublet) and sigma-complexed dimer (a singlet) have
been evaluated to be about 2.1 and 3.2, respectively, at the UHF level of theory.'' It is
also known that the MPn series converges very slowly for cases where the underlying
UHF wavefunction is highly spin-contaminated.'*"*

In some processes like bond dissociation or when there is a small HOMO-LUMO gap

associated with the system, the wavefunction may possess genuine multireference

character. In such cases, a single determinantal reference is simply incapable of



describing the wavefunction, as opposed to the dissociation limit where unrestricted
orbitals are a satisfactory single-reference description. We are then required to employ a
multiconfigurational reference wavefunction like multiconfigurational self consistent
field method (MC-SCF). However, the choice of configurations to be included, the need
for additional corrections to include dynamic correlation and the related increase in
computational complexity limit the use of such methods to small molecular systems.'>'®
Clearly, the quality of the reference wavefunction has a significant role to play in

determining the performance of a method.

To tackle the spin contamination problems of the UHF orbitals one can switch to a

restricted open shell HF (ROHF) wavefunction, which is an eigenfunction of S? and thus
eliminates spin-contamination in the reference determinant altogether. While ROHF
does not permit easy description of the dissociation limit in hemolytic bond-breaking,
restricted open shell MP2 (ROMP2)'”'® and CC methods' have been implemented.
These methods are reported to perform better than the corresponding unrestricted cases in
describing structure and frequencies of radicals, especially for the cases where the spin
contamination is high.”* However, a statistical study on small doublet radicals indicates
that ROMP2 continues to perform poorly. The authors attribute this failure of MP2 to HF
orbital instabilities and symmetry breaking problems.’

Spin projection methods are also sometimes used to project out the leading spin
contaminants from the converged (unrestricted) HF wavefunction®?' or at the MP

122

level.”™ Alternatively reduction of spin-contamination and symmetry breaking problems

due to the UHF wavefunction can be reduced by explicit inclusion of electron correlation.

It is known that the deviation of the <S2> value from the actual limit of S (S +1)



decreases when the level of correlation is improved from UHF to UMP2 and UCCSD *.
However, the decrease in case of UMP?2 is not very significant.

A more drastic (and fundamental) solution is to eliminate the use of mean-field
Hartree-Fock orbitals altogether. The use of optimized orbitals in coupled-cluster

methods such as Brueckner coupled-cluster doubles (BD)***’

and orbital-optimized
coupled-cluster doubles (OD)** were found to be effective in decreasing the spin
contamination effects of the wavefunction and also in improving its stability towards
symmetry breaking. However, these methods scale with the sixth power of system size
and can be routinely applied to only relatively small molecules.

Kohn-Sham density functional theory (KS-DFT)*’* can also provide orbitals that are
less prone to spin contamination as they include dynamic electron correlation effects
during the orbital optimization procedure.zg The KS-DFT description of high-spin open
shell molecules is found to be rather good® and it can also be used as the reference
wavefunction for coupled-cluster methods to obtain improved results at almost no
additional cost.’’ However, present-day density functionals suffer from self-interaction
errors” and also lack the ability to describe long-range van der Waals effects. Thus they
cannot be used to study radical systems where either or both of these issues are
important.®® This failure of DFT is vividly portrayed by the recently studied example of
the phenalenyl 7 -dimer and its radical cation.**

In this work, we propose a simple self-interaction-free method to include dynamic
correlation effects during orbital optimization that is intermediate in cost and complexity

between Kohn-Sham DFT and optimized orbital (Brueckner) coupled cluster methods.

The idea is to produce scaled opposite-spin MP2-type (SOS-MP2)* optimized orbitals,



i.e., we want to find the set of optimal orbitals that makes the energy, which now includes
a scaled second order perturbative correction to the correlation effects (see Eq. (1)
below), stationary with respect to orbital rotations. This method may be described as
“orbital-optimized opposite-spin scaled second order correlation” which we abbreviate as
02.

Opposite-spin MP2 (OS-MP2) methods™° empirically enlarge the MP2 expression
for alpha-beta correlation, while the same-spin contribution is completely neglected.
These simple models were motivated by the work of Grimme who proposed to scale the
two spin-components of the MP2 correlation energy with different factors (SCS-MP2).*’
OS-MP2 methods can be partly justified based on the fact that the opposite-spin
correlation effects are larger in magnitude, as same-spin electrons are already correlated
in the mean-field reference due to Fermi statistics. They statistically improve upon MP2
theory for relative energies and other molecular properties.®>~**** 0S-MP2 methods
also offer computational advantages as their energies and analytical gradients*> can be
evaluated with only fourth order effort (without exploiting locality), unlike conventional
MP2 (or SCS-MP2), which scales with the fifth power in system size. Further savings are
possible when locality and sparsity effects are taken into consideration (e.g. see Jung et
al.*%).

With the inclusion of correlation effects during the orbital optimization procedure in
the O2 method, we hope to capture most of the advantages of the Brueckner models (such
as OD) at much reduced cost. For example, O2 ought to reduce spin contamination in the
UHF reference to a large extent. Relative to Kohn-Sham methods, the O2 approach has

the twin advantages of being self-interaction free (as it still uses a single-reference whose



Coulomb and exchange matrix elements are treated exactly), and naturally including
dispersion interactions. Algorithmically, the O2 method can be easily incorporated into
an existing iterative framework that determines the HF orbitals and energies using a
convergence procedure like geometric direct minimization (GDM)*’ based on orbital
gradients.

We report the working equations and implementation of the O2 model in Section 2.
As a result of the orbital relaxation, correlation energies could be slightly overestimated
when compared to SOS-MP2 energies. Hence we suspect that the optimal value of the
scaling factor may be slightly lower than the prescribed value for SOS-
Cops =

MPZ( 1.3) 2° We examine this with a statistical study of the atomization energies of

the G2 database of 148 molecules*®*’ in Section 3. We also evaluate the performance of
the O2 model for describing geometries and vibrational frequencies of a range of small
doublet radicals and simple closed-shell molecules and compare its performance with
other theories like HF, MP2 with the resolution-of-the-identity approximation (RI-

MP2)’**! and SOS-MP2, and the more expensive OD method. In order to estimate the

extent of spin contamination, we have also calculated the <S‘ 2>02 values for the doublet

radicals. As a final example which is large enough to be difficult to treat via Brueckner
methods like OD, we revisit the phenalenyl radical and its sigma dimer,'" to estimate the
improvement in spin contamination and energetics over unrestricted HF and MP2

theories.

II. Theory

A. The O2 model



For each iterative step, the O2 energy is simply given by:

E,,=E_  +cykE (1)

oS~ 0S

E, is the mean-field reference energy while the opposite spin correlation energy £ is

given by 3536,
NT
E, = —; WTPZQ{X;CQ (z)x7,(1) )

In the SOS-MP2 and MOS-MP2 methods, Eq. (2) is the final working energy expression
that is derived by utilizing a combination of auxiliary basis expansions and Laplace

transformation to achieve fourth order computational scaling.*>~° It can be written as:
[23
XgQ = ZB,'I; (T)Big(f) 3)

where the B matrix is given in terms of two- and three-center integrals:

B! (7)= Y. (ialR)(R|P) “exp[ (e, &,)1. ] 4)

R

In the above expressions, indices i, /,... are occupied orbitals while a,b,... refer to

virtual orbitals, and the bar above the orbitals indicates 8 spin. P,Q,...indicate auxiliary

basis functions while 7,w_,z,N_ represent the quadrature point, the associated

72772
quadrature weight and root, the total number of quadrature points used, respectively.

Further details about the implementation of Eqgs. (3) and (4) is available in Refs. Jung et
al.*> and Lochan et al.’® The optimal scaling factor ¢, used in Eq. (1) is determined in
the next section through a statistical study.

To find the optimal set of orbitals, we require E , to satisfy the following

stationary condition®®:



dE,, dU _

du do )

where U is the unitary transformation matrix defined in terms of rotation angles 6 that

transforms the old set of orbitals into the new optimal ones, namely,C =C_U. The

term c;_g is independent of the model being used and is described elsewhere.”* As the

energy, E . is affected only by the virtual-occupied (vo) rotations, we only need to

02

E
evaluate the orbital gradient: WOZ, which can be easily expressed as:

vo

Eor _sF ve 21 (6)
dU vo oS vo

In the above expression, the orbital derivative of the reference energy is simply given by

the vo elements of the Fock matrix (Fm)47 while the OS Lagrangian (Lm) evaluated

with the current basis gives the orbital gradient of the OS correlation energy.’® The

expression for L retains the same form as the SOS-MP2/MOS-MP2 Lagrangian but

includes an extra term(L4)

L,=(11), +(£2), +(23), +(14), ™

45,53

The detailed expression for L1, L2, L3 are described elsewhere. L4 arises because the

orbitals do not satisfy the Brillouin condition ¥, = 0, and is given by i

(L4)m =F P +FP (8)

ov Vv



where, P ,P , represent the occupied-occupied and virtual-virtual elements of the OS

one-particle density matrix (P).*> The computational cost of evaluating the Lagrangian,

L, is roughly twice the cost of evaluating the OS correlation energy.

The correlation correction to both the energy in Eq. (1) and its orbital derivative

in Eq. (6) can be readily incorporated into an orbital-gradient based SCF framework such

as geomtric direct minimization (GDM).*” The resulting procedure becomes:

I.

Generate an initial guess set of orbitals: for instance generalized Wolfsberg-
Helmholtz (GWH)®’, core Hamiltonian or HF optimized orbitals can be used.

Build the Fock Matrix.

Evaluate E

os»L,, with the current set of orbitals.

dE
Update £, a’éz for the current iteration.

Generate a new orbital step and thus a new set of molecular orbital (MO)
coefficients through the GDM procedure.
If convergence (based on the maximum gradient component) is not achieved, go

back to step 2.

We observe that the orbital gradient could alternatively be used to define a generalized

Fock matrix as the basis for a more conventional diagonalization-based SCF procedure

for the O2 model, but we shall not pursue this question further here.

B. Evaluation of <S' 2>

02



A

The expectation value of total spin operator, S, measures spin contamination in the

22,23,56,57

wavefunction. For methods like O2 without well-defined wavefunctions, we

evaluate <S‘2> as the response to a perturbation A.S”that is added to the Hamiltonian:

(52 o

By applying standard perturbation theory we can express <S‘ 2> as *%:

<§2 >02 - <§2>ref + 2<¢”

Here, ¢ ,¢ represent the reference and the first order O2 correction to the wavefunction.

%) (10)

As only doubly excited determinants contribute to¢,, we can re-express Eq. (10) after a

few steps of algebra as:

5.l

<S‘,2>02:<*2> +Coszz Ib jAjb (11)

ia jb

Here, S, = J.qbl_s+(}>5dr and S, = jqus_q)adr > and (z‘a‘]_'g ) are the 4-center 2-electron

integrals in Mulliken notation. The energy denominator is A,j: =€ ,+E —E &, where

g, is the orbital energy. <$‘2> [ (s+1)+n ] ZZS S where n, is the number

i

of B spin electrons.”

We now introduce auxiliary basis functions and the Laplace scheme to avoid the
formal 5™ order cost of evaluating Eq. (11) (in making the (z‘a‘j_'g) integrals) in a

procedure similar to that followed in SOS-MP2*’ to get,

10



($7) = <§2>mf + cosiwfi§25igsja3jj (z)B% (1) (12)

ia jb P
The product of the two Laplace-transformed B matrices (Eq. (4)) approximately
represents the fraction of the four-center two-electron integral over the energy

denominator in Eq. (11). The evaluation of this expression now scales as O(Nf.ozvX ),

where, o,v, X represent the number of occupied, virtual and auxiliary basis functions,

respectively. This is much smaller than the dominant step in O2 energy evaluation,

namely Eq. (3), which requires about O(NT.OVX 2) operations (since X = 3N, (number
of basis functions), and N, =v>o0). We note here that Eq. (12) also corresponds to the

<3‘2> expression for RI-MP2 and SOS-MP2, with ¢,, =1 andc,; =1.3, respectively.

II1.Results and Discussion

We have implemented the O2 model described above in a developmental version of
QCHEM."® We determine the optimal scaling factor ¢, used in Eq. (1) by analyzing the

performance of the O2 method relative to experiment in a statistical study of various
properties like atomization energies, bond lengths and vibrational frequencies of both
closed- and open-shell systems. As the O2 analytical gradients and Hessians are not yet
available, the optimized geometries and vibrational data at this level are obtained by
applying the standard finite difference procedure to the O2 energy and gradient,
respectively. The OD, HF, RI-MP2 and SOS-MP2 optimized geometries are obtained
using their respective analytical gradients, while the frequencies are obtained by the finite

difference of their gradients. In this report, we use unrestricted HF orbitals as the initial

11



reference for all the calculations and apply constraints to ensure that the alpha-beta spin
symmetry is broken for closed-shell systems in order to locate any possible unrestricted
solution. A tight integral threshold of 10 was employed and the SCF convergence

criterion was set to 10~ . Also, all electrons were correlated for the reported molecules.

A. Atomization energies

48,49

The 148 small molecules of the extended G2 database consists of 118 closed-shell

molecules and 30 open-shell systems. We have evaluated the atomization energy using
the O2 model for various ¢, values (between 0.9-1.4) using different standard basis sets

of either triple-zeta or quadruple-zeta quality and corresponding auxiliary basis sets.”
Table 1 summarizes the statistical errors (MSE: mean signed error; MAE: mean absolute
error; RMS: root mean squared error; MAX: maximum absolute error) obtained relative
to “experimental electronic” atomization energies for the various scaling factors and basis
sets used. The experimental values are obtained from Ref. 60 where the zero point energy
is subtracted from the original experimental data to allow direct comparison with the
estimated electronic energies from the indicated methods.

The triple-zeta quality basis, both Pople-type (6-31 1G(2df,2pd))61’62 and the Dunning
basis set (cc-pVTZ),* predict that the statistical errors relative to experiment are minimal

for the scaling factor ¢ . =1.3. The RMS error is about 5 kcal/mol while the MSE is

about -1 to -1.6 kcal/mol indicating that the atomization energies are almost equally
overestimated and underestimated across the 148 molecules. The MAX error of ~ 21
kcal/mol is encouraging, and in fact, a closer look at the absolute errors indicated that

only 9 molecules in the whole set had errors above 10 kcal/mol. The atomization energies

12



seem to be quite sensitive to the scaling factor as increasing or decreasing the scaling
factor by 0.1 units increases the RMS error by almost a factor of 2-3. This shows both the
advantage as well as the potential disadvantage of having an empirical parameter in the
model.

As mentioned in the Introduction, we expect the optimal scaling factor for the O2

method to be slightly lower than the prescribed SOS-MP2 value of ¢, . = 1.3%° due to

orbital relaxation, which leads to overestimation of the correlation energy. However, we
do not observe this here, because in the comparison against experiment with a triple-zeta
quality basis we are trying to compensate for both limitations of the correlation treatment
and basis set incompleteness effects. The latter necessarily depends on the basis used.
To study the effect of the basis set quality on the atomization energies and the scaling
factors, we have obtained the statistical errors for a quadruple-zeta quality Dunning basis
set (cc-pVQZ).** Since the Dunning basis sets are systematically constructed, we can
estimate the complete basis set (CBS) limit by the two-point extrapolation scheme
suggested by Halkier et al. ©

The cc-pVQZ and the T-Q extrapolated CBS limit (termed as cc-pV(TQ)Z) results
are also indicated in Table 1. At the cc-pVQZ level, the Chg=09-12 results are
improved relative to the cc-pVTZ results. In particular, the ¢, =1.3 results are relatively
worse with cc-pVQZ than with cc-pVTZ: the MAE and RMS errors have almost doubled.
At the same time, the quality of the ¢, =1.2 results is improved considerably. The MSE,
MAE and RMS errors are almost halved compared to the corresponding cc-pVTZ case,
while the MAX error decreases by almost 3.5 kcal/mol relative to ¢, =1.3/cc-pVTZ.

This improvement in results with the shift in the scaling factor is consistent with our

13



earlier belief that the optimal scaling factor must be slightly lower than the prescribed
value for SOS-MP2 due to the orbital relaxation effects. This notion is further confirmed
by looking at the T-Q extrapolated CBS limit results. We now have a new soft minimum
at c,, = 1.2 with respect to all the statistical errors considered. The RMS error is about
5.6 kcal/mol, while the MAX error is about 18 kcal/mol. Therefore our best estimates of
the atomization energies indicate that the optimal scaling factor for predicting relative
energies is about ¢, =1.2, as we approach the basis set limit. For smaller basis sets,
larger factors are optimal as already discussed previously.

In SOS-MP2 and MOS-MP2 theories,”>° the quality of the method with respect to
the scaling factor was determined by comparison against a more advanced theory like
QCISD(T)® for a given basis set. This also minimizes basis-set specific effects by
assessing the quality of the given method against the best available estimate of that
particular property within a given basis set.®” In the same spirit, we have also compared
the O2 atomization energies against the corresponding QCISD(T) results calculated with
the cc-pVTZ basis. The resulting errors are shown in Table 2 for various scaling factors.

We find that the ¢, =12 case indeed gives the least errors relative to QCISD(T),

consistent with the estimated CBS limit results in Table 1. We have also included the

statistical errors relative to QCISD(T) from our previous work on SOS-MP2* and MOS-

MP2*® to compare against our O2 (c,s =1.2) results in Table 2. These results indicate

that the MP2-type methods provide tremendous improvement over HF theory in general,

and scaled MP2 methods improve upon MP2 itself. The quality of the O2 method with
¢,s = 1.2 is very comparable (and slightly better than in terms of RMS and MAE errors)

to SOS-MP2 and MOS-MP2.
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B. Bond lengths
We will now examine the performance of the O2 model in describing the structural

features of 12 simple first-row doublet radicals (BO, CF, CH, CN, CO", FH', NO, OF,
OH,F,, N:, 0}) considered by Beran et al.”' and 17 small, simple closed shell systems
(corresponding to 24 bond lengths) CH,O,'CH,, CH,, CO, CO,, F,, H,, H,O,
HCCH, HCN, HF, HNC, HOF, HOOH, N,, N,H,, NH,) using the 6-311G(2df,2pd)
basis set. The experimental bond lengths of these molecules were obtained from Ref. 31,

68, 4 and references therein. Figures 1 and 2 show the plot of the errors (= 7,00 = Tz )

obtained in the bond-lengths relative to experiment by unrestricted HF, OD, RI-MP2,

SOS-MP2 and O2 (c,s =0.9-1.3) methods for the radicals and closed-shell systems,

respectively. The details of the obtained errors by the indicated methods are shown
explicitly for each molecule in Table S1 and S2 (in supporting information). Table 3
summarizes the net statistical errors obtained for both types of system considered here.
Figures 1 and 2 clearly reflect the well-known tendency of HF theory to
underestimate bond lengths for both open- and closed- shell systems due the absence of
dynamic correlation effects (which slightly depopulate bonding orbitals, and slightly
populate antibonding orbitals). The RMS error for HF is about 4.3 pm and 3.3 pm,
respectively, for each case. OD also shows a tendency to underestimate bond distances
(presumably due to neglect of connected triple excitations and beyond) although to a
much lesser extent than HF. OD shows RMS errors of only about 1.5 pm and 0.9 pm,
respectively for the radicals and closed-shell molecules. RIMP2 and SOS-MP2 slightly

improve the HF description of the radical bond lengths by bringing down the HF RMS
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error to about 3 pm and 2.7 pm, respectively, but clearly inclusion of second order
correlation beyond HF does not help in reliably predicting accurate radical bond
distances. The RMS, MAE and MAX errors of SOS-MP2 can be decreased by almost
50% by employing optimized O2 orbitals. However, the RI-MP2 and SOS-MP2
optimized bond lengths for the closed-shell systems are almost as accurate as the OD
description. In fact, SOS-MP2 appears to predict geometries that are slightly better than
OD! Also, the statistical results obtained for SOS-MP2 are in close correspondence with

that of O2 (¢, =1—1.2), which again confirms the notion that the optimal OS scaling
factors for O2 should be slightly lower than the prescribed c,; = 1.3 for SOS-MP2.

For the smallest scaling factor considered here (c,; = 0.9), O2 displays a tendency to
underestimate the radical bond lengths falling very close to the OD curve, while
¢,s =1.2,1.3 tend to predict longer bonds. The MSE errors shown in Table 3 further
indicate that the largest cancellation of errors occurs with ¢,; =1.0,1.1 for the radicals

where the RMS errors are about 0.6 pm in each case. A similar trend is seen for the
closed-shell molecules, except that the optimal scaling factors are shifted slightly towards
cos =1.1,1.2. Also, the closed-shell systems appear to be rather insensitive towards the
scaling factor as the RMS error varies only between 0.5-1.0 pm.

For both OD and HF, the most significant outlier amongst the open-shell systems is
F, (absolute error of 3.9 pm and 11.1 pm, respectively), followed byO,, where the
errors are 1.1 pm and 5.5 pm respectively. O2 (¢, =1.1) manages to reduce this error to

about 0.5 pm and 0.9 pm, respectively, for both molecules. For RI-MP2 and SOS-MP2,

the largest outliers correspond to N (absolute error of 7 pm and 6 pm, respectively) and
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CN (absolute error of about 5 pm each), while O2 (¢, =1.1) decreases this error to about
1 pm. For closed-shell systems, the F-F, F-O and O-O bonds in F,, HOF and HOOH
molecules present the three largest deviations from experiment for both HF and OD with
MAX errors of 8.4 pm and 2.2 pm, respectively, for F,. The O2 model with ¢, =1.1,1.2
reduces this absolute error in the F-F bond length to about 0.4 pm and 0.9 pm,
respectively. The MAX error for these two scaling factors occurs with the singlet CH,
system with 1.8 pm and 1.6 pm, respectively, which is in close agreement with the
corresponding MAX errors obtained with RI-MP2 and SOS-MP2. The combined
statistics of the 29 molecules considered in this study are also shown in Table 3, which
reflects that ¢, =1,1.1 produce the least errors. However, the performance of ¢,; =1.2
is only slightly poorer, with MAE, RMS and MAX errors for the combined set that are
comparable to the OD errors and provide significant improvement over not only the HF
description of both open- and closed-shell systems, but also the MP2 description of

radical bond lengths.

C. Vibrational Harmonic frequencies

The harmonic vibrational frequencies of the same 29 molecules used above were
determined at the respective HF, OD, RI-MP2, SOS-MP2 and O2 (¢, =09-13)
optimized geometries using the 6-311G(2df,2pd) basis set. The dataset thus consists of 12
frequencies from the simple doublet radicals and 54 frequencies from the 17 closed-shell

molecules. Figures 3 and 4 display the estimated errors (=@, — @, ) relative to

experimental data for the open- and closed-shell systems, respectively. In Figure 4, for

systems containing more than 2 atoms, only the two largest absolute errors are shown in
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the plot for clarity. The details of the obtained errors by the indicated methods are shown
explicitly for each molecule in Table S3 and S4 (in supporting information). The
experimental harmonic frequencies were acquired from Ref. 6,31,69,70 and references
therein for all molecules except ICHZ, HOF, HOOH, N,H, . For the latter four molecules,
the experimental frequencies were obtained from Ref. 71. Table 4 lists the statistical
errors obtained across the radicals set and the closed-shell systems.

Figures 3 and 4 corroborate the conventional wisdom that the frequencies predicted
by HF are too high with respect to the experiment. This is quite natural, as the HF method
tends to shorten the bonds. Consistent with previous studies,’ the MP2-type description of
the radical bond-frequencies is very erratic, with RMS errors of 540 cm' and 525cm’,
respectively, for RI-MP2 and SOS-MP2, which is higher than the corresponding RMS
error obtained for HF theory. With the inclusion of correlation during orbital
optimization, both the OD and the O2 models are able to reduce the extent of these errors
in the vibrational frequencies. The high level OD treatment achieves RMS and MAE
errors of about 99 cm'and 92cm’, respectively, for the radicals. With O2
(cps =1.2,1.3), the dynamic correlation is overestimated leading to longer bonds and
smaller frequencies. The deviation from experiment is quite controlled in case of O2
(cps =0.9-1.1), with RMS errors ranging between 65-87 cm for the radicals and is
consistently better than OD. This again suggests that for a particular property, the scaling
parameter can be fine tuned to achieve good accuracy with respect to experimental data.

As shown in Table 4, the statistical errors for the radicals indicate that the best

performance is obtained by O2 (¢, = 1.0), with an RMS error of about 65cm™, which is

almost 30 cm lower than the corresponding OD result. The largest deviation of the HF
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and O2 (c,s =1.1-1.3) frequencies from experiment is observed with the molecules, F,
and O, , as for the bond-lengths. In this case, the absolute error for O; is decreased from
about 590 cm™ obtained with HF to about 40 cm™ with O2 (¢, =1.0). The
corresponding absolute error obtained with O2 (¢,s =1.2) is about 260 cm™. RI-MP2 and
SOS-MP2 produce disastrous results for NO, CN andCO" , with absolute errors on the
order of 1300cm™, 900 cm™ and 800cm™, respectively, while the corresponding O2
(¢ys =1.2) errors are less than 100cm ™.

With the closed-shell systems, Figure 4 indicates that the lower scaling
factors, ¢, = 0.9,1 , display a tendency to predict higher vibrational frequencies, although
the extent of the overestimation is much lower than that of HF. Also, the RI-MP2 and
SOS-MP2 description of the vibrational frequencies is very good with MAE errors on the
order of 60-70cm" and their description appears to be better than OD (MAE is about
87cm™). In particular, the obtained statistical errors for SOS-MP2 are in close
correspondence with those of O2 (¢,, =1.2). The absolute errors corresponding to O2

(¢ps =1.1,1.2) lie within 100 cm™ except for a few prominent outliers. From Figure 4,

the major outliers with errors greater than 400 cm™ correspond to the frequencies of

'CH,, HOF, HOOH, N,H, for HF theory and correspondingly, high errors greater than

or close to 200 cm™ are uniformly associated with the OD, RI-MP2, SOS-MP2 and O2
model for all the scaling factors considered. As mentioned earlier, the experimental data
corresponding to these molecules do not represent pure harmonic frequencies.
Consequently, the lack of anharmonic corrections to the theoretical results produces

errors that are too high.
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As these errors due partly to anharmonicity would bias our analysis, we have
excluded these four molecules from our statistical study of the closed-shell systems and
shown the corresponding results in Table 4. Following this, the RMS, MAE and MSE
values decrease by almost 30-50% for all the O2 cases, the MP2-type methods and OD,
and by about 20% for HF. The MAX error for all the O2 cases and HF drops by at least
100 cm'and 170cm’, respectively, while the RI-MP2 and SOS-MP2 MAX errors
decrease by almost 50-60% and the OD MAX error is about four times smaller. The
statistical errors for the modified closed-shell set clearly indicates that the RI-MP2 and
SOS-MP2 vibrational frequency results are on par with OD, with SOS-MP2 providing a
marginally improved performance that is quite close to the O2 (¢,, =1.2) results. The

new significant outliers are N, and F, for HF theory with absolute errors on the order of

350-375cm ™. With the O2 model (c,, = 1.1,1.2), these errors can be decreased by almost
93% for N, and by about 75-90% forE, . The statistical errors in Table 4 corresponding
to the modified closed-shell set now indicate that ¢,; = 1.2 is the optimal scaling factor.
Table 4 also reports the combined statistics obtained for all the open-shell and closed-
shell molecules (excluding 'CH,, HOF, HOOH, N,H, ). This modified set now includes
48 harmonic vibrational frequency data. Table 4 indicates that the O2 model with any of
the scaling factors considered here can obtain significant improvement over HF, RI-MP2
and SOS-MP2 theory as far as predicting vibrational frequencies goes and O2
(cps=1.0,1.1) provide OD quality results. The RMS and MAE values for O2
(cps=09-12) are within 73+8cm”and59 +9 cm™, respectively, indicating that

changes of about 0.1 units in the scaling factors are quite insensitive towards the overall

performance of the model. Therefore, in keeping with our previous analysis on
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atomization energies, bond lengths and now vibrational frequencies, we conclude that the
scaling factor for the O2 model that gives most reasonable performance across all

properties we’ve considered is likely to be ¢, = 1.2. We retain this optimal scaling factor

for the remaining discussion in this paper.

D. Spin contamination
The evaluation of <3‘ 2> is often used as a diagnostic tool to estimate the extent of spin
contamination present in the wavefunction.”®’ Using the procedure described in the
p g p

Theory section, we have calculated and reported the <§2> values in Table 5 for the O2

model with ¢, =1.2 for the 12 doublet radicals considered in the preceding section and

compared it to the corresponding estimates from HF, OD, RI-MP2 and SOS-MP2

theories with the 6-311G(2df,2pd) basis set. The extent of spin contamination at the HF
level of theory is quite high for radicals like CN andCO", where the predicted <3’2>

value is 1.156 and 1.003, respectively, as against the actual value of 0.75 for a doublet
spin state. With the inclusion of correlation effects in RI-MP2, this decreases slightly to
1.150 and 0.968, respectively. With the O2 method, this improves to 0.752 and 0.755,
respectively, which is almost comparable to the performance of the more advanced (and
far more computationally demanding) OD treatment. Overall, the mean absolute
percentage error (MAPE) is decreased from almost 7% (HF theory) to a mere 0.2% at the
02 level, and the maximum deviation from the actual value of 0.75 is only 0.005. The

MAPE of RIMP2 and SOS-MP2 (about 6% each) indicate that only marginal
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improvements can be obtained with the inclusion of second order correlation beyond the
HF description.

The effect of spin contamination in the HF wavefunction sometimes worsens as the
radical gets bigger in size. We will now re-examine such an example where the effect of

high-spin contamination can be correlated with poor relative energies. The phenalenyl
doublet 7 -radical (P*) can associate to form 7 -stacked® or o -type (P?)'" dimers. It

was the subject of a recent computational study where it was found that the unrestricted
HF <$‘ 2> values for the P* radical and the various P, dimers were as high as 2.1 and 3.2,

respectively, in place of the actual values of 0.75 and 0."' Also it was found that
unrestricted HF theory did not bind (BE = 31 kcal/mol) the ¢ -dimer while the
corresponding unrestricted MP2 method predicted very low interaction energies (BE = -
6.0 kcal/mol for the RR1 isomer) when the binding energy (prior to basis set super
position error (BSSE) or zero-point energy corrections) was simply calculated as:

BE=E,, -2E, (13)

The authors had to resort to an alternative scheme that split the interaction in terms of an
isogyric and non-isogyric process in order to get a good consistent description. As the
latter step involved smaller molecules, it was treated with a more sophisticated
computational method such as CCSD(T) while the former step was treated with HF and
MP2, which are known to perform well with isodesimic/isogyric processes.''

This is the type of case where our new O2 method may exhibit its advantages over

HF and MP2 theory, which perform poorly, and OD theory, which is computationally too

expensive to be applied to this system. We have calculated the <$’2> value and the
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binding energy calculated according to Eq. (13) for the RR1 isomer of the P -dimer at
the unrestricted HF, RI-MP2 and O2 (¢, =1.2) levels of theory using 6-31G* basis. The

UHF/6-31G* optimized structures of the respective species were taken from Small et al."'

The results shown in Table 6 indicate that the O2 model is able to almost eliminate spin

contamination in the P* radical. In this case, the <5’ 2> value decreases from 2.1 at the HF

level to about 0.76. For the P, -dimer, O2 is able to locate the correct restricted solution,

thereby completely eliminating the spin-contamination found at the HF level. We
emphasize here that the respective O2 calculations on the dimer (spin state = 0) were
performed using the unrestricted HF reference orbitals and constraints were applied to

ensure that the alpha-beta spin symmetry is broken in order to find any possible

unrestricted solution. Also note that RI-MP2 only manages to improve <$’ 2>HF by about

0.2-0.3 units for both P’ and its sigma dimer.

The resulting binding energy evaluated according to Eq. (13) at the O2 level of
theory is about -21.6 kcal/mol for the RR1 dimer, which is consistent with the
corresponding result of -20.8 kcal/mol evaluated using the alternative scheme proposed
by Small et al.'' Therefore, the O2 model offers a simple and relatively cheap way to
clean up the spin-contamination problems and predict correct energetics in a
straightforward manner for complex systems like phenalenyl dimers that are

computationally too expensive to be treated at the OD level, for instance.

IV. Conclusions
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We have extended the concept of using scaled opposite-spin second order correlation
energy to obtain optimal orbitals that effectively improve the HF description of both
open- and closed-shell systems in terms of energetics and geometrical features. We call
this simple, second order variant of the optimized orbital coupled cluster doubles (OD)
method, “orbital-optimized opposite-spin scaled second order correlation” theory (0O2).
Without cutoffs or use of sparsity, the O2 energy can be evaluated with computational
effort that scales only as the 4th power of system size (with cubic disk and quadratic
memory), unlike OD theory, which requires 6™ order computation, 4™ order disk storage.

We recommend using 1.2 as the optimal opposite-spin scaling factor in the O2 model
based on the results of a statistical study (using experimental data as reference) of
atomization energies, bond lengths and vibrational frequencies of small closed-shell
systems and doublet radicals. This study also indicated that OD-type results could be
obtained for describing the bond-distances and vibrational frequencies of small doublet
radicals and the HF harmonic vibrational frequencies could be improved by almost 70-
80%. While the O2 description of closed-shell systems is probably as good as and
sometimes even better than SOS-MP2, in case of open-shell systems, the O2 model
outperforms both SOS-MP2 and RI-MP2.

We also found that small changes to the magnitude of the optimal scaling factor do
not greatly affect the performance of the O2 model in predicting molecular geometry and
frequencies. However, the magnitude of the chosen scaling factor quite sensitively affects
atomization energies. The need to empirically choose the parameter value is therefore one

of the biggest disadvantages of the O2 model, which is true of all opposite-spin scaled
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techniques.”*

However, for particular chemical applications, this may be turned to
advantage, by tuning its value for the problem at hand.

In this paper, we also show that one of the significant advantages of the O2 model
is its ability to almost eliminate the spin-contamination problem of the unrestricted HF
reference wavefunction. We further demonstrated that the O2 model could clean up the
large spin-contamination of the phenalenyl radical and its sigma-dimer at the UHF level
and obtain binding energies that are consistent with higher level methods. We therefore
believe the O2 method is a promising technique for treating large radicals- it bridges the
gap between optimized orbital coupled cluster doubles methods (OD, BD etc) that are too

computationally expensive, while not suffering from deficiencies of present-day density

functional theory methods such as self-interaction errors and neglect of dispersion forces.
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List of Figures

Figure 1. Plot of the deviation of the OD, HF, RIMP2, SOSMP2 and O2 (¢, =0.9-1.3)
optimized bond lengths from the respective experimental values for the 12 doublet
radicals using 6-311G(2df,2pd) basis set.

Figure 2. Plot of the deviation of the OD, HF, RIMP2, SOSMP2 and O2 (¢, =0.9-1.3)
optimized bond lengths from the respective experimental values for the 17 closed-shell
molecules using 6-311G(2df,2pd) basis set.

Figure 3. Plot of the deviation of the OD, HF, RIMP2, SOSMP2 and O2 (¢, =0.9-1.3)
harmonic vibrational frequencies from the respective experimental values for the 12
doublet radicals using 6-311G(2df,2pd) basis set.

Figure 4. Plot of the deviation of the OD, HF, RI-MP2, SOS-MP2 and O2
(cps =0.9—1.3) vibrational frequencies (only the top two largest errors are shown for all

polyatomic molecules) from the respective experimental values for the 17 closed-shell

molecules using 6-311G(2df,2pd) basis set.
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Table 1. Calculated statistical errors® in atomization energies of the 148 G2 database

molecules relative to experimental data using O2 method with ¢ varied between 0.9-1.4

and different basis sets (in kcal/mol).

Error 0.9 1.0 1.1 1.2 1.3 1.4
6-311G(2df,2pd)
MSE -47.95 -36.42 -24.85 -13.23 -1.57 10.15
MAE 48.01 36.73 24.92 13.31 3.50 10.50
RMS 54.45 41.34 28.25 15.30 4.66 12.81
MAX 108.60 82.50 56.86 31.17 20.80 42.05
cc-pVTZ
MSE -47.00 -34.84 -22.95 -11.03 0.95 12.97
MAE 47.06 35.14 23.02 11.12 3.72 13.37
RMS 52.79 39.15 25.73 12.59 5.17 16.44
MAX 101.10 73.82 46.49 25.81 21.28 42.66
cc-pvVQZ
MSE -42.38 -30.18 -17.93 -5.65 6.69 22.53
MAE 42.45 30.25 18.01 6.37 7.10 22.38
RMS 48.38 34.55 20.78 7.62 8.73 25.68
MAX 95.21 68.09 41.00 17.83 27.99 56.90
cc-pV(TQ)Z

MSE -40.17 -27.72 -15.23 -2.69 9.89 10.15
MAE 40.24 27.81 15.52 4.59 9.97 10.50
RMS 46.20 32.16 18.24 5.76 11.85 12.81
MAX 93.08 65.80 38.48 18.25 33.58 42.05

* MSE: mean signed error; MAE: mean absolute error; RMS: root mean squared error;

MAX: maximum absolute error.

® Complete basis set limit estimated from the 2-point T-Q extrapolation scheme.
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Table 2. Calculated statistical errors in the atomization energies relative to QCISD(T)

values obtained by the various flavors of MP2 and the O2 method (¢, = 0.9 -1.4) with

cc-pVTZ basis for the 148 molecules of the G2 database (in kcal/mol).

Error 0.9 1.0 1.1 1.2 1.3 1.4
MSE -32.24 -20.17 -8.29 3.64 15.61 27.63
MAE 32.36 20.53 8.67 4.29 15.64 27.64
RMS 36.61 23.07 9.92 5.83 18.51 32.06
MAX 70.04 43.30 19.45 24.92 40.54 68.04
Error HF* RIMP2*  SCSMP2* SOSMP2* MOSMP2* 02(1.2)
MSE 137.07 -10.19 -6.33 -4.34 2.80 3.64
MAE 137.09 11.68 6.84 5.00 491 4.29
RMS 156.51 14.87 8.42 6.18 6.18 5.83
MAX 312.15 38.12 24.43 21.08 16.51 24.92

* From Ref. 35,36.
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Table 3. Statistical errors in bond lengths of 12 doublet radicals, 17 closed-shell systems

and their combined set (29 molecules) relative to experimental bond lengths estimated at

the OD, HF, RIMP2, SOSMP2 and O2 (¢, =0.9-1.3) levels of theory using 6-

311G(2df,2pd) basis (in A).

Error OD HF RIMP2 SOSMP2 0.9 1 1.1 1.2 1.3
Doublet radicals
MSE  -0.011 -0.032 -0.001 -0.005  -0.009 -0.003 0.002 0.008 0.018
MAE  0.011 0.034 0.023 0.019 0.009 0.005 0.006 0.011 0.021
RMS 0.015 0.043  0.03 0.027 0.012 0.006 0.006 0.014 0.032
MAX  0.039 0.111 0.07 0.061 0.033 0.016 0.012 0.035 0.098
Closed-shell systems
MSE  -0.006 -0.026 -0.002 -0.001 -0.008 -0.005 -0.002 0.001 0.005
MAE  0.006 0.026 0.002 0.003 0.008 0.005 0.003 0.004 0.007
RMS 0.009 0.033  0.009 0.005 0.01 0.007 0.005 0.006 0.01
MAX 0.022 0.084 0.021 0.018 0.025 0.019 0.018 0.016 0.024
Combined Set

MSE  -0.007 -0.028 -0.002 -0.002  -0.008 -0.004 -0.001 0.004 0.009
MAE  0.007 0.029 0.012 0.009 0.008 0.005 0.004 0.007 0.011
RMS 0.011 0.037 0.019 0.016 0.011 0.007 0.005 0.01 0.02
MAX  0.039 0.111 0.07 0.061 0.033 0.019 0.018 0.035 0.098
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Table 4. Statistical errors in the harmonic vibrational frequencies of 12 doublet radicals,

17 closed-shell systems and their modified combined set” estimated at the OD, HF,

RIMP2, SOSMP2 and O2 (c, = 0.9-1.3) levels of theory relative to experimental

harmonic vibrational frequencies using 6-311G(2df,2pd) basis (incm™).

Error OD HF RIMP2 SOSMP2 0.9 1 1.1 1.2 1.3

Open-shell radicals
MSE 91.8 2432 2055 245.8 66.3 279 -144 -64 -134
MAE 91.8 2498 379.7 360.6 66.4 61.7 687 106.8 167.2
RMS 98.5 2916 5394 525.5 78.7 653 874 141.5 247.7
MAX  152.8 588.7 13457 1239.5 1547 1345 169.1 321.6 660.5

Closed-shell systems
MSE 80.3 223 64.5 60.8 102.7 86.6 696 51.6 326
MAE 87.1 2244 77.6 66.2 104.1 885 743 618 61.9
RMS 123.4 258.6 108.5 98.4 133.6 1203 108 952 91.6
MAX 4664 548.1 3074 280.3  340.1 313.5 286.2 2652 2514

Modified Closed-shell systems®
MSE 47.6 182.7 305 28.1 68.3 531 372 204 2.9
MAE 48.2 182.7  49.7 36.1 70.3 56 443 356 411
RMS 55.6 199.7 613 43.5 79.4  66.6 565 433 55.7
MAX  122.7 3755 1549 100.9 204 189 174 1024 151.7

Modified Combined Set"
MSE 58.7 197.8 74.2 82.5 67.8 46.8 243 -0.7 -31.3
MAE 59.1 1995 1322 117.3 69.3  56.1 504 534 72.6
RMS 68.9 2262 2749 265.4 79.2 663 65.6 80.1 132.9
MAX 152.8 588.7 1345.7 1239.5 204 189 174 321.6 660.5

¢ For 25 molecules: without' CH,, HOF, HOOH, N,H, .

® For 13 molecules: without' CH,, HOF, HOOH, N,H, .
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Table 5. Calculated <Sz> values and statistical errors from OD, HF, RIMP2, SOSMP2

and O2 (c = 1.2) theories with 6-311G(2df,2pd) basis set for the 12 simple doublet

radicals.

OD HF RIMP2 SOSMP2 02(1.2)
BO 0.7519 0.8039 0.7954 0.7929 0.7530
CF 0.7503 0.7618 0.7563 0.7558 0.7517
CH 0.7502 0.7589 0.7543 0.7539 0.7514
CN 0.7525 1.1560 1.1498 1.1493 0.7523
coO* 0.7533 1.0034 0.9675 0.9645 0.7552
E; 0.7504 0.7660 0.7571 0.7563 0.7501
FH® 0.7501 0.7548 0.7522 0.7519 0.7511
N; 0.7509 0.7531 0.7511 0.7509 0.7504
NO 0.7505 0.7947 0.7840 0.7831 0.7508
O; 0.7503 0.7627 0.7554 0.7548 0.7500
OF 0.7506 0.7700 0.7639 0.7633 0.7510
OH 0.7501 0.7559 0.7528 0.7525 0.7511
MAPE (%)* 0.1230 6.9672 6.0485 5.9580 0.1876
RMS 0.0014 0.1400 0.1325 0.1319 0.0020
MAX 0.0033 0.4060 0.3998 0.3993 0.0052

* MAPE: mean absolute percentage error.
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Table 6. Calculated <§ 2> and total energy (in Hartrees) of the phenalenyl radical and one

of the isomers of the phenalenyl o dimers (RR1) (see Ref. 11) using unrestricted HF,

RIMP2 and O2 (¢, = 1.2) theories with 6-31G* basis set. Also shown is the resulting

non-counterpoise corrected binding energy (BE) in kcal/mol.

Method <S' ? > Total Energy BE*
Phenalenyl radical® HF 2.0764 -497.583 769
RIMP2 1.9238 -499.154 067
02 (1.2)° 0.7634 -499.032 361
Phenalenyl ¢ dimer (RR1)" HF 3.1991 -995.118 191 30.97
RIMP2 2.9198 -998.317 634 -5.96
02 (1.2)°  0.0000 -998.099 082 -21.56

:BE-E_ -ZE

Phenalenyl |

® Calculation carried out on the unrestricted HF/6-31G* optimized structure obtained

from Ref. 11.

¢ Energy evaluated using the unrestricted HF orbitals as the initial reference.
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Figure 1. Plot of the deviation of the OD, HF, RIMP2, SOSMP2 and O2 (¢, =0.9-1.3)
optimized bond lengths from the respective experimental values for the 12 doublet

radicals using 6-311G(2df,2pd) basis set.
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Figure 2. Plot of the deviation of the OD, HF, RIMP2, SOSMP2 and O2 (¢, =0.9-1.3)

optimized bond lengths from the respective experimental values for the 17 closed-shell

molecules using 6-311G(2df,2pd) basis set.
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Figure 3. Plot of the deviation of the OD, HF, RIMP2, SOSMP2 and O2 (¢, =0.9-1.3)

harmonic vibrational frequencies from the respective experimental values for the 12

doublet radicals using 6-311G(2df,2pd) basis set.
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Figure 4. Plot of the deviation of the OD, HF, RI-MP2, SOS-MP2 and O2

(cos = 0.9-1.3) vibrational frequencies (only the top two largest errors are shown for all

polyatomic molecules) from the respective experimental values for the 17 closed-shell

molecules using 6-311G(2df,2pd) basis set.
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